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We show that a controlled point whose velocity is bounded in magnitude can, by
remaining in a -neighborhood of a given motion, avoid an exact contact with any
number of pursuing points whose velocities are less than the velocity of the eva-
ding point. We construct a control method ensuring evasion from all pursuers by
a finite distance and an arbitrarily small deviation of the point's motion from a
given straight line.

1, Statement of the problem, We consider the motions of one evading point
E and n pursuing points Py, . . ., P, in an m-dimensional space, m > 1. The ve-
locities of all the points can change directions arbitrarily and are bounded in magnitude,
The velocity of point E does not exceed a constant », while the velocities of all pur-
suers Py, ..., P, donotexceed kv, where k is a constant, 0 < k< 1. At the
initial instant { = ¢y point E is in position E¢ not coinciding with any of the points
Py, ..., Pn. Aray z passing through point E4 and a number ¢ >0 are specified.
The motion of point E along ray x with velocity » is termed nominal. We are required
to form a control method for point E, by which this point is at a finite distance from
all Py, ..., P, forall t >t while temaining in the e-neighborhood of the nomi-
nal motion. We assume that at each instant ¢ the velocity of point E can be chosen
as a function of the position of points E, Py, . . ., P, on the interval [¢,, ], as well
as of the constants », %, e and of ray z. For the control method found we are askedto
estimate the minimal distance § from point E to the points Py, . . .y Pn for > 1.

A control method solving the problem posed is constructed below and the quantity §
is estimated for it, Here the trajectory of point E consists of a finite number of arcs of
smooth curves (logarithmic spirals and segments of ray x) and coincides with ray z for
fairly large £. To realize the motion it is sufficient to know the positions of points
P,, ..., P, only at those instants that they approach point E by specified distances.

without loss of generality we can assume m = 2, i,e, motion takes place in a plane,
Actually, for m >> 2 we select an arbitrary plane passing through ray x and we consider
that point £ moves in this plane, evading the projections of points Py, . .., P, onto
this plane, Obviously, the velocities of the projections do not exceed kv. If this evasion
problem is solved, then by the same token so is the original problem for m > 2, There-
fore, below we assume m = 2.

2,Evasion from one point, Let us construct the evasion maneuver of point
E from one pursuing point P, for which the inequality EP > L is satisfied for all
t>1t .Here L >0 isan Arbitrary given number not exceeding the distance EP
at instant f. We specify the motion of point £ as consisting of three sections; the
first and second sections may be of zero length, The velocity of point £ on all the sec-
tions is constant and equals ». On the first section [z, £4] point £ moves along ray x
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from the initial point Fqto a point A at which the equality KPP = L first is satisfied.
On the second section [#4, fg] point E moves along an arc of a certain curve AR
whose endpoints lie on ray z, while on the third section [¢p, oo] it again moves along
ray x from point B to .

Fig. 1

We find the curve AB from the condition that the inequality EP > L is fulfilled
even if the position of point P for ¢ > t4 is not measured. Let us introduce the fol-
lowing notation: (@ is the position of point P at instant 4 ; « is the angle between
ray z and segment AQ, where 0 <{ & < n ; R is the current distance QF ; @ isthe
current angle between the segments QF and.QA, and s is the arc length of curve AE,
counted from point A (Fig. 1). Since the velocity of point P does not exceed kv, we
have

EP > QFE —kv(t — ta) = R — ks 2D
The condition EP > L is satisfied on arc AB if we set
R—ks=1L (2.2)
in (2. 1), Differentiating equality (2. 2), we obtain
dR = kds = k (dR*® 4+ Rd¢?)" (2.3)
Integrating the differential equation (2, 3) under the initial condition R (0) = L, we
find the function R (g) = Lt (2.4

Here and later we use the notation

A=k — k) =ctgy, k= A1 4 A% = cos y (2.5)
0<y<<mn/2

Using relations (2. 4) and (2. 5) it is easy to prove that the tangent at point A to the
logarithmic spiral (2, 4) makes an angle of = — y with segment 0A. Therefore, two
cases offer themselves, depending upon the valuesof a & [0, n] . If n — p <
@ < 7, then for @ > O the spiral (2.4) in the neighborhood of point A lies to the
same side of ray z as does point (. In this case we set B = A ; the arc AB shrinks
to a point, Here the second section of the motion is absent and point £ moves along
ray I for the whole time ; the angle B = QBz equals @ and lies within the limits
[m — vy, n]. when O < a < ® — ¥ the spiral AB intersects ray Z at point B
(Fig. 1). The angle @ at point B equals f — a, where § = /QBz. Substituting
@ = f — o and (2.4) into the equation of ray Z in the form R (@)sin (¢ + a) =
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L sin a, we obtain a transcendental equation for f

IP)=7(x), f(B) =e€e*sinP, a <P (2.6)
The function f (B) of (2. 6) vanishes at the endpoints of the interval [0, n] and, as an
investigation shows, increases ‘monotonically on the interval [0, ® — y] anddecreases
monotonically on the interval [ — vy, ®]. Hence it follows that when 0 < a < nn —
¥ ,Eq. (2. 6) has in the interval [e, n] the unique solution § >> @ lying within the
limits ® — y <P <C @. Thus,in both cases,i.e. for any a & [0, x], we have,with
due regard to notation (2, 5),

n—y<<Pp<Cay, cosP <k (2.7

The inequality EP > L is satisfied by construction on the first two sections (£, <
t < tB) for the evasion maneuver described, For an arbitrary instant ¢ >> ¢p of the
third section we have

EP > QE — kv (t — ta) = (QB* + EB* — 2EB-QB cos ) — (2.8)
kv(t — tg) — kv(tg — ta) > QB — EB cos p — kEB — kSan

According to (2. 2) the length S4p of arc AB equals k! (QB — L). Using now in-
equality (2, 7), from (2. 8) we have that EP > L. Therefore, in all cases the maneuver
constructed ensures the inequality EP > L for all ¢ > ¢,.

3. Maneuver for evasion from = points, We construct the proposed
method of evading n pursuers on the basis of the maneuver of Sect.2. By §, we denote
the minimal one of two distances EP,, . . ., EP, at the instant ty; by hypothesis,
8y > 0. The motion of point E depends upon parameters L and % such that 0 <
L < 8gand 0 << % < 1; these parameters will be chosen below. We introduce the
notation L; = Ly’-T and we call the instant ?;, when the condition

min; EP; = Ly = Lx-!, i=1,....,n,j=12,...,0<x<1 3.1

is first satisfied after the start of motion, the instant of j-th encounter.

We specify the motion of point £ in the following manner: at eachinstant ¢ point
E moves at a velocity v, constant in magnitude, along a program trajectory for the
given instant . Let us define the concept of a program trajectory for each instant
t > ty. For any t > £, the current program trajectory is an oriented piecewise-smooth
curve without selfintersections, starting from the current position of point F at instant
t and going off to infinity along arc x. For ¢ = I, the program trajectory is ray z.
On the intervals #; < t < t;43, j = 0, 1, . . . the origin of the program trajectory
is moving along it together with point E; here the program trajectory is not altered
in other respects. At the encounter instants £;, j = 1, 2, . . . the program trajectory
is reconstructed in the following way. By A; and @; we denote, respectively, the posi-
tions at instant ¢, of point % and of that one of points P; for which the minimum in
relation (3, 1) is achieved. If for ¢ = #; the minimum in (3. 1) is achieved simultan-
eously for several points P, then as Q; we select, for definiteness, that one of them
for which the number i is the least. We draw two L;-spirals whose equations have the

form
R,=L;exp(l,q>j), 0<(Pj<ﬂ, =12, ... (3.2)
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Here Rj is the current distance from Qj; @; is the polar angle read off from the straight
line Q;A; in two opposite directions for the two spirals being examined. The arcs of the
L ;-spirals (3. 2) are mirror-symmetric to each other relative to segment Q;4; and have
common endpoints for ¢; = 0 and ¢; = =.

Suppose that the program trajectory has been constructed for ¢ = ¢; — 0 and that
it starts at point A;. If for ¢ = ¢; —  the program trajectory has no other common
points besides 4 ; with the Lj-spirals (3, 2) constructed, then the program trajectory for
t = t; + 0 will be the same as that for ¢ = ¢; — 0. Otherwise,by B; we denote
the first point after 4; of the intersection of the program trajectory corresponding to
t; — 0 with the closed curve formed by the arcs of the L; -~spirals (3.2). The program
trajectory corresponding to ¢ == #; + O is the curve comprised of the arc 4;B; of that
one of the L; -spirals containing point B; and of the remainder of the program trajec-
tory for #; — Q starting from point B;.

The process described recurrently determines the program trajectory for any instant
t > I, for any finite number of encounters. For ¢t & (¢;, tj1) the program trajectory
consists, by construction, of arcs of Ly, Ljy, . . ., L, -spirals, connected in the order of
decreasing index, and of the portion of ray x which includes the point at infinity, The
arcs of all the spirals correspond to the polar angles 0 < ¢ < =, but some arcs can
be absent, The construction of a program trajectory at any instant completely determines
the control method for point £. The real trajectory of point E consists of arcs of Lj-
spirals and of a portion of ray x, and to accomplish this trajectory it is sufficient to
measure the positions of points P; only at the encounter instants, It remains to select
the parameters L and % so as to ensure the finiteness of the number of encounters and
the evasion of point £ from all Py, ..., P, while its motion remains in the e-neigh-
borhood of the nominal motion.

4, Estimate of the distances, At first we assume certain estimates, Suppose
that immediately before the j-th encounter (ft = ¢; — 0), j > 1 the program trajec-
tory starts off on an arc of an L-spiral, p < j — 1, of nonzero length, after which
there follows an arc of an L,-spiral, ¢ < p — 1. Figure 2 shows an arc 4B} of an
L ,-spiral with pole @, and the arcs of two
L;-spirals with pole ;. As a result of the
construction in Sect. 3 we obtain a program
trajectory for the instant ¢ = ¢; + 0, a sec-
tion A;B;B, of which is shown in Fig, 2
by a heavy line with arrows. For ¢ > ¢;
we estimate the distance EP; from point
E up to that point P; with which the j-th
encounter occurred, At first we assume that
the next (f 4 1)-st encounter does not take

Fig, 2 place so long as point £ moves over the sec-
tion A;B;B, of the program trajectory. On
the arc A;B; of the L;-spiral we have EP; > L; in accord with the property of a
logarithmic spiral (see Sect. 2). Let us estimate in two ways the distance EP,; as point
E moves along the arc B;B).

We introduce into consideration a point £’ moving with a constant velocity v along

the straight line A;B; from the point B; in the opposite direction of A4 ;. Here we
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suppose that the point E’ is located at Bj; at the very same instant ¢’ as point E. Ap-
plying to points £’ and P, the reasonings presented at the end of Sect, 2 for the points
E and P, we obtain that E'P; > L; for t > t'. By the triangle inequality we have
EP, > E'P, — EE' > L; — EF’ (4.1
Since points £ and E’ have a velocity v of like magnitude and coincide at the instant
¢’, we obtain t
=|vj‘[e(t)—e']dt|, 1>t (4.2)
v
Here ¢’ is the unit vector of the straight line A;B; and e (t) is the unit vector of the

tangent to arc  B;B,. By s we denote the current length of an arc of curve B;B),
counted off from point Bj;. We have

le(t)—e'|= ‘e(t')"'e'+§'-d£-dt|<|e(t')—e’|+§ ge

ds  (4.3)

The unit vector €’ of the chord A;B; equals the unit vector of the tangent at some
point of the L ,-spiral,lying between Ajand Bj. By s’ we denote the length of the
arc of the L p-spiral from this intermediate point to point B;; from (4.3) we obtain

’

le@)—e'|< S |“+ﬂ'£+h<s+s<ﬁii (4.9
Pm pm
Here we have used the 1nequa11ty I de / ds | < pm !, where py, is the minimal radius

of curvature of the L p-spiral and s” is the length of the arc A;B; of this spiral. The
radius of curvature of the Lp-spiral defined by Eq.(3.2) is

P = (R + R (R* + 2R.* — RRoo)™ = Lp (M + 1) e

Here the subscripts ¢ denote differentiation with respect to ¢y, while the subscript p
has been dropped.
For ¢ > 0 the minimal radius of curvature is

m=Ly VA +1 (4.5)

We estimate the length s” of the arc A;B; of the L,-spiral using relation (2, 2) for
the Lp-spiral and the triangle inequality

= (QpB; — QpA) K < A;Bik7  (Q5B; + Q54K Lik™ (er 4- 1) (4.6)

In the estimate (4, 6) we have used the relations

Qid; = Lj, QiB; < L (4.7
following from (3. 2), Substituting inequality (4.4) into (4. 2) and integrating, we obtain
EE' < (M8 + s5") / Pm (4.8)

Introducing relations (4. 8), (4. 5) and (4. 6) into inequality (4. 1) and using notation

. 5), i
(2. 5), we find EP; >L, _ Lp_lalsg _ Lij_lazs, s>0 (4.9)

ay =Yy (O + D)7 @y =A@+ 1)

For an estimate of the distance EP; in another way we note that point P; occupies



16 F.L.Cahernous'ko

position Q; at ¢ = ¢; and its velocity does not exceed kv. Therefore,

EP; > Q;E — Q;P; > (B;E — Q;B)) — kv (t — t;) > (4. 10)
BjE — L,-e)"‘ — k(Sj + S)
Here we have twice used the triangle inequality for the estimates of EP; and Q;E,

as well as the inequality (4.7) for Q;B;. The length of the arc 4;B; of the L;-spural
is denoted by s;- We estimate it, taking equality (2. 2) and estimates (4. 7) into account

sj = kT (Q;B; — Qi4y) < Ljk (M — 1) (4.1D)

R = QpEs R, = QPBh = ABJQPE
for brevity and using the equalities R = R,e** = R, + ks stemming from relations
(8.2) and (2. 2) for the Lp~spiral, we obtain (see Fig. 2)

B;E = (R* + R,* — 2RRcos Y)s = (R — R, 1 + (4.12)
4sin® (x/2) RR, (R — R)™I" = ks [1 + 4sin ? (x/ 2) e X
(e — 1)~%]r = ks [1 + sin? (y / 2) sh-? Ay /2l O<A<SH)
It is easy to verify by differentiation that on the interval Q < % < 7 the function

sin (x / 2) sh=! (Ay / 2) decreases monotonically for any A >> O and, therefore,
achieves its minimum for % == 7. Then from (4. 12) we obtain

BE > ks [1 + sh-2 (A / 2)]*s = kscth (An / 2) (4. 13)
Introducing inequalities (4, 11) and (4. 13) into inequality (4. 10) and using notation
(2. 5), we find
EP; >ass —aL;, s>0 (4. 14)
ag = k[cth (A / 2) — 1] = 20 (1 + A%~ (e — 1)1
ag = 2eM — 1 > 1
Comparing the two estimates (4. 9) and (4. 14), we obtain

EP, > max[fy (), f ()] > mingo max [fy() o0 (419
fu() = Ly — Ly 'a,s® — LijLp~a,s, f () = ags — a,L;

Denoting

The function f, (s) decreases monotonically while the function f, (s) increases mo-
notonically with the growth of s for s > 0; f, (0) > 0 and f, (0) < 0. The mi-
nimum in (4, 15) is reached for the s, > 0 for which

F1(84) = F2G4)y EP; >[5 (se) = Ljp (4. 16)

Here p is a dimensionless quantity introduced by the last relation in (4. 16). From this
relation, using (4. 15), we express
$e = Lj(a,+p) a7 (4.17)

We substitute equality (4. 17) and the expressions (4. 15) for f, and f, into the first
equation of (4. 16) and, next, we solve the resulting equation relative to Lj;. we obtain

L: - . as® (1 — ) 4,18
f;‘ =gM), gMW= (as F p) (a1as - azas + @) ¢ )
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The function g () decreases strictly on the interval [0, 1] ; consequently, the inverse
function g-! exists which is continuous and decreases strictly on the intervai [0, g {0)].
Therefore, allowing further for relations (3. 1) and for the inequality j — p > 1,we

optatn — g () > g (), 0<x<4(0) (4.19)
We note that
g (0) < aga, %0, < aglay = 81 (1 + A (@ — 1)7 <
A/ (™ —DP <821 A>0)
follows from relations (4. 18), (4. 9) and (4. 14). Substituting inequality (4. 19) into(4.16),

we have
EP; > Lijg™ (%) (4. 20)
Thus, as point E moves along the arc B;B, the estimate (4. 20) is valid for any x
from the interval
0<x<<g0)<1 (4.20)

Since under conditions (4. 21) we have g7 (x) < 1, inequality (4. 20) is valid as well
for motion along the arc A;B; of the L;-spiral, where EP; > L;. The fulfiliment
of conditions (4. 21) guarantees estimate (4. 20) as point £ moves from A; up to its
departure at the point B, on the arc of the L,-spiral, ¢ < p — 1. This assertion is
valid, of course, also when one or both arcs A;Bj and B;B, are zero,

We assume above that the next (j + 1)-st encounter does not occur as point £
moves along the section A4;B;B, . We now relinquish this assumption. Let the point
E experience after the instant f, encounters with the points P,, ..., P, and let
v (t) > 0 be the number of these encounters on the interval (¢;, £). Let v denote
the instant when point E first goes onto the program trajectory corresponding to the
instant t; -+ O after point Bp. In other words, v is the first instant after Z; that point
E goes onto some L,-spiral, r < g < p — 1. Let us consider a point E, moving
at the velocity v on the section A;B;B of the program trajectory. Suppose that point
E, coincides with E at instant #; and arrives at point B, atinstant v,. Then,in ac-
cord with the triangle inequality and the estimate (4. 20) obtained for the point E,,

h
weRSVe P, > E P, — EE, > Lig™ (x) — EE,, ti<t<t (4.22)

Let us estimate the distance between points £ and E,
t
EE, =|[ vy —veen at|, 4<i<w (4.23)
t;
i

Here v (f) and v, (¢) are the velocity vectors of points E and E,, respectively, equal
in magnitude to a constant v, For the sections of the trajectory of point E, belonging
to the trajectory of point E,, the corresponding contribution to integral (4, 23) equals
zero. For the remaining sections integral (4. 23) is majorized by twice their total length,

e EE, <22, H<SIST (4. 24)

Here 3 is the sum of the arcs of the Ly, . . ., Lj.,-spirals, which we estimate by
means of inequality (4. 11) and formula (3. 1)

DR I S T SR T N Lk t(e=—1)x (1 — ) (1 — %)t (4.25)
If T < 7,, estimates (4. 22) and (4, 24) are valid on the whole interval ft;, <. 1f,
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however, T > t,, a further consideration of t & [7,, 1] is needed. The path tra-
versed by point £ in the time [¢;, t] does not exceed the path traversed by point £,
in the time [¢;, v,] by more than ¥ . Therefore, point £ traverses a path no greater
than 3 in the time ¢ — T, and ¢ — v, <( 2 / v. During this time the distance EP,
can decrease by no more than

v+ hE(Et—T)<<{U+hZ
Subtracting this quantity from the right-hand side of inequality (4. 22) and using the in-
equalities (4. 24) and (4. 25), we obtain the required estimate

EP,>Lig ) — B +KZ>L;jlgt ) — Gk + (420
Nt — 1) x (@ —x) (1 —x)7, 4SEIST

Note that the boundedness of X follows from formula (4. 25) and, consequently, that of
Tas v —»o00.

5. Choice of the maneuver parameters, Letusrequire that the inequa-
"
B gty > @k et — D — ) — 0 et (5

be satisfied for all integers ¥ . Under condition (5. 1), from inequality (4. 26) follows
EP; > Lj,yy for all &; < t < 7. This implies that among the encounters taking
place in the interval (f;, ) there is no encounter with point P;. Therefore,under con-
dition (5. 1), encounters with point P; do not occur on the whole interval (¢;, 7). We
rewrite condition (5. 1) as

gl >k —wit(b—1), b=Ck" +1)(E—1)1—%T (5.2
Let us estimate quantity b, using formulas (2,5). We obtain
' b > 3k~ > 3n > 1
Therefore, inequality (5. 2) is satisfied for all v > O if it is satisfied for v = 0. Sub-

stituting v = ( into (5. 2), we obtain the condition g~(x) > %. Combining this with
the condition (4. 21) found above and allowing for the monotonicity of function g, we

have 0 < x < %y (5.3)
where 1, is the single positive root of the equation
g (%y) = %ar %y >0 (5.4)

We select the parameter % from interval (5. 3). Here the motion of point £ described
in Sect.3 possesses the following property. If the j-th encounter took place with point
P; as point E moved along an arc of the L,-spiral, p <( j — 1, then the next en-
counter with this same point P; can take place no earlier than after point E has gone
onto an arc of the L,-spiral, r < p — 1. This property extends to ray z which can
be taken as an [y-spiral.

without loss of generality suppose that the points 2;have been numbered in the order
in which their first encounters with point E takes place. Then, the first encounter with
point P, occurs on ray x and, in accordance with the property established, there are no
other encounters with this point. The first encounter with point P, can take place either
on an arc of the L,-spiral or on ray z after leaving this arc. In the first case a repea-
ted encounter with point P, can occur only after going onto ray &, while in the second
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case it does not occur at all, Let us estimate the total number N (n) of encounters with
with 7z pursuers. From the preceding arguments follows N (1) {1 and N (2) < 3.
a Figure 3 shows schematically, not
to scale, typical trajectories of point

v P 7 E for(a) n= 2, N = 3 and (b)
2 n =3, N =7 ; the digits indicate

the encounter numbers.
The following inequality, provable
b by induction, is valid:

N(p <20 —1 (5.5)

7 3 \ T
zv \5/ 7 % Iequality (5.5) is true for n = 4, 2,
3 4 ‘ 3. Let it be true for n. Then,in the

Fig. 3 case of n - 1 pursuers the total num-
ber of encounters can be estimated as
follows. After the first encounter with point P; the point E moves along the L;-spiral
and can encounter the remaining » points, Not more than N (r) encounters with these
points can occur before going onto ray z . After going onto ray z point P; need not be
taken into account since encounters with it do not occur any more, but N (n) further en-
counters can take place with the remaining points. Thus, with due regard to (5. 5)

N+ 1) <t+N@+ N@) <2 —1
and inequality (5. 5) has been proved by induction.

Let us now estimate the distance between point E and the point E° accomplishing
the nominal motion. Analogously to inequalities (4. 23) — (4. 25) we obtain

EEP 208y 485+ oo+ syem) <2LE (™ —1) (1 —%)  (5.6)

The motion of point £ must lie in the e-neighborhood of the nominal motion, i.e. ,
EE° < e. For this, according to (5. 6), it suffices to take

O< L min[Yek(1 —x) (& — 1)1, §,] 5.7
We have here also allowed for the condition L < §, imposed above. Thus the para-
meters L and % must be selected within the limits (5. 3) and (5. 7). Here the evasion
maneuver of Sect, 3 satisfies all the conditions imposed and the number of encounters
satisfies inequality (5. 5).

According to (4. 18) and (5. 4) the determination of %, requires solving a cubic equa-

tion. Let us obtain a simple explicit expression for % = %, lying within limits (5. 3).
Together with the function g from (4. 18) we consider the linear function

oW =0—p g, & =a(a+t 1) (a,a4 + asas + 1)t (5.9
Comparing (4. 18) and (5. 8) we see that £ (1) << g (p) for 0 < p <C 1, and the
root x,of the equation go (o) = %o (5.9)
lies within the limits (5. 3). Solving Eq.(5. 9) with due regard to (5. 8), we find the quan-

tity required % =g /(1+ g (5. 10)
Let us estimate further the minimal distance 8§ between the points £ and Py,. . .,
P, for t > t,. Since the maximum number of encounters does not exceed N (n)
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from (5.5 , n
( ). 8 = mini,‘ EP, > LN(nHl = LuN(m > Lx@-1) (5.11)

1<i<n, t>t
If we select the maximum possible L. allowed by inequality (5. 7), then from (5. 11)

we obtain , .
8 > min [C, () &, C* (k) 5] (5.12)
C, ('k) = 1/2 k (1 — u) (e"" — 1)”13(‘2'"-1), C.* (k) _ u(ﬁ"—l)

As x we can take any number from interval (5. 3), for example, the %, from (5. 10), We
obtain explicit expressions for X, Cn (k) and C,* (k) by substituting relations (5. 8),
(4. 9),(4. 14) and (2. 5) into formulas (5. 10) and (5. 12). In particular, when the capabi-
lities of the pursuers approach the capability of the evading point (k — 1), we find
according to the formulas indicated above

%o = 2hetX, C,, (k) = 0.5¢ Ax@"1)
Co* (k) = %", A=k —A)%—>oc0, k-t

We note that the evasion strategy proposed in Sect. 3 for point E, as well as the bounds
(5.3) and (5. 7) on the choice of parameters L and %,do not depend upon the number

n of pursuers,
Translated by N, H, C,

UDC 62-50

ON A PROBLEM OF I-ESCAPE

PMM Vol. 40, N2 1, 1976, pp. 25-317
P. B. GUSIATNIKOV
(Moscow)
(Received February 5, 1975)

We give criteria for escape and /-escape in nonlinear differential games. The
paper is closely related to the investigations in [1— 8].

1, Let the motion of a vector z in an n-dimensional Euclidean space R be des-
cribed by the vector differential equation

dz/dt =f(t, z, u, v) (L.1)

where £>0; u & P and v & Q are control parameters varying on sets P and Q
compact in R . Regarding the right-hand side of Eq. (1. 1) we assume that:
a) f(t, z, u, v) is continuous in (¢, z, u, v) = X= [0, + ©)xX RXPXQ;
b) the inequality

lf(t1 %, U, v)_’f(ta 23, uiv)l<ktlzl—zﬂl

where k,is a constant depending only on ¢ , is satisfied for any u & P,v & Q and
for t>0a 23, ZQERv |t'+lzl|+lza'<0i

c) a constant B exists such that

l(zf (tv 2, U, 7)))' <B (1 + |z|2)



