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We show that a controlled point whose velocity is bounded in magnitude can, by 
remaining in a-neighborhood of a given motion, avoid an exact contact with any 
number of pursuing points whose velocities are less than the velocity of the eva- 
ding point. We construct a control method ensuring evasion from all pursuers by 
a finite distance and an arbitrarily small deviation of the point's motion from a 
given straight line. 

1. S t a t e m e n t  o f  t h e  p r o b l e m .  We consider the motions of one evading point 
E and n pursuing points P l ,  • • . ,  Pn in an m-dimensional space, m > t .  The ve- 
locities of all the points can change directions arbitrarily and are bounded in magnitude. 
The velocity of point E does not exceed a constant v, while the velocities of all pur- 
suers P l  . . . .  , Pn do not exceed kv, where k is a constant, 0 ~ k < t .  At the 
initial instant t = to point E is in position E0 not coinciding with any of the points 
P1, . . . .  Pn.  A ray z passing through point E0 and a number 8 ~ 0 are specified. 
The motion of point E along ray x with velocity t~ is termed nominal. We are required 
to form a control method for point E,  by which this point is at a finite distance from 
all Pl  . . . . .  Pn for all t > to while remaining in the e-neighborhood of the nomi- 
nal motion. We assume that at each instant t the velocity of point E can be cho6en 
as a function of the position of points E,  P l  . . . . .  Pn  on the interval [to, t], as weU 
as of the constants v, k, 8 and of ray x. For the control method found we are asked to 
estimate the minimal distance 8 from point E to the points P1, • • . ,  Pn for t~.~[0. 

A control method solving the problem posed is constructed below and the quantity 
is estimated for it. Here the trajectory of point E consists ofafinite number of arcs of 
smooth curves (logarithmic spirals and segments of ray x) and coincides with ray x for 
fairly large t • To realize the motion it is sufficient to know the positions of points 
P*, • • . ,  Pn only at those instants that they approach point E by specified distances. 

Without loss of generality we can assume m = 2, i .e .  motion takes place in a plane. 
Actually, for m ~ 2 we select an arbitrary plane passing through ray x and we consider 
that point E moves in this plane, evading the projections of points Pl  . . . .  , Pn onto 
this plane. Obviously, the velocities of the projections do not exceed kv. If this evasion 
problem is solved, then by the same token so is the original problem for m ~ 2. There- 
fore, below we assume m = 2. 

2 .Bv&81on  fzolI1 o n e  p o i n t .  Let us coustmct the evasion maneuver of point 
E from one pursuing point P ,  for which the inequality E P  ~ L is satisfied for all 
t > to . Here L ~ 0 is an arbitrary given number not exceeding the distance E P  
at instant to. We specify the motion of point E as consisting of three sections ; the 
first and second sections may be of zero length. The velocity of point E on all the sec- 
tions is constant and equals v. On the first section [to, tA] point E moves along rayx 
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from the initial point Eo to a point A at which the equality E1 ) - L first is satisfied. 
On the second section [tA, -~B] point E moves along an arc of a certain curve A B  
whose endpoints lie on ray x, while on the third section [tB, oo] it again moves along 
ray x from point B to oo. 

& 

E 0 A x 

E 

Fig. 1 

We find the curve A B  from the condition that the inequality E P  > / L  is fulfilled 
even if  the position of point P for t ~ tA is not measured. Let us introduce the fol- 
lowing notation: Q is the position of point P at instant tA ; ct is the angle between 
ray x and segment AQ,  where 0 .~  ez ~ ~ ; R is the current distance QE ; cp isthe 
current angle between the segments QE and ,QA, and s is the arc length of c u r v e A E ,  
counted from point A (Fig. 1). Since the velocity of point P does not exceed kv, we 
have 

E P  >/ QE --  k v ( t  - -  t.4) = R - - k s  (2.1) 

The condition E P  > L is satisfied on arc A B  if we set 

R - -  ks = L (2.2) 

in (2.1).  Differentiating equality (2.2),  we obtain 

dR = kds = k (dR ~ + R2dq)2) '/' (2.3) 

Integrating the differential equation (2, 8) under the initial condition R (0) -= L ,  we 
find the function 

R (¢p) = L e ~  (2.4) 

Here and later we use the notation 

k = k ( t - - k = ) - ' / ,  = c t g %  k = k ( t  + M ) - ' / , = c o s y  (2.5) 
0 < ~ , < a / 2  

Using relations (2.4)  and (2.5)  it is easy to prove that the tangent at point A to the 
logarithmic spiral ( 2 . 4 )  makes an angle of ~ - -  y with segment 0A .  Therefore, two 
cases offer themselves, depending upon the values of cz ~ [0, 3]  . If  ~ - -  y 
oc ~ 3 ,  then for q~ ~ 0 the spiral (2 .4)  in the neighborhood of point A lies to the 
same side of ray x as does point Q. In this case we set B = A ; the arc A B  shrinks 
to a point. Here the second section of the motion is absent and point E moves along 
ray x for the whole t ime ; the angle ~ = Q B x  equals ~ and lies within the limits 
[~ - -  y ,  ~] .  When 0 ~ cz ~ ~ - -  y the spiral A B  intersects ray x at point B 
(Fig. 1). The angle q) at point B equals ~ - -  ez, where ~ ~ ~ Q B x .  Substituting 
q~ -~ ~ - -  cz and (2.4) into the equation of ray x in the form R (¢p)sin (cp -~ o~) 
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L sin  g ,  we obtain a transcendental equation for 6 

/ ( 6 ) - - - - - ] ( c z ) ,  ] ( 6 )  = ex~ s i n 6 ,  c z ~ 6 ~  ~ (2 .6)  

The function ] (6) of (2.6) vanishes at th.e endpoints of the interval [0, ~] and, as an 
investigation shows, increases monotonically on the interval [0, ~ - -  y] and decreases 
monotonically on the interval [~t - -  y, ~]. Hence it follows that when 0 ~ ¢z .~  ~ 
y , Eq. (2.6) has in the interval [cz, ~] the unique solution 6 ~ ~z lying wRhin the 

limits ~ - -  y ~ 6 "~ ~. Thus, in both cases, i .e .  for any ¢z ~ [0, ~], we have,with 
due regard to notation (2 .5) ,  

: ~ - - ~ 6 ~ ,  c o s 6 ~ - - k  (2.~) 

The inequality E P  ~ L is satisfied by construction on the first two sections (to 
t ~ tv) for the evasion maneuver described. For an arbitrary instant t ~ tB of the 

third section we have 

E P  ~ Q E  - -  k v  ( t  - -  tA) = (QB ~ + E B  2 - -  2 E B . Q B  cos ~ ) ' / ' -  (2.8) 

k v  ( t  - -  tB) - -  k v  (tB - -  ta)  ~ Q B  - -  E B  cos 6 - -  k E B  - -  k S A B  

According to (2, 2) the length SAB of arc A B  equals k -1 ( Q B  - -  L ) .  Using now in- 
equality (2.7), from (2.8) we have that E P  ~ L .  Therefore, in all cases the maneuver 
constructed ensures the inequality E P  ~ L for all t ~ to. 

8 .  M a n e u v e r  f o r  o v a e l o n  f r o m  n p o l n t e .  We constmctthe proposed 
method of evading n pursuers on the basis of the maneuver of Sect. 2. By ~}0 we denote 
the minimal one of two distances E P  1 . . . .  , E P  n at the instant to; by hypothesis, 
80 ~> 0. The motion of point E depends upon parameters L and u such that 0 
L ~ 80 and 0 ~ x ~ t ;  these parameters will be chosen below. We introduce the 
notation L 1 = L x  J-r and we call the instant tj, when the condition 

mint  E P ~  = L j  ~ L x  j-~, ~ = t  . . . . .  n, f = i , 2  . . . . .  0 < ~ ¢ < i  (3.1) 

is first satisfied after the start of motion, the instant of ] - th  encounter. 
We specify the motion of point E in the following manner: at each instant t point 

E moves at a velocity v ,  constant in magnitude, along a program trajectory for the 
given instant t. Let us de fne  the concept of a program trajectory for each instant 
t ~ to. For any t ~ to the current program trajectory is an oriented piecewise-smooth 

curve without selfintersections, starting from the current position of point E at instant 
t and going off to infinity along arc x. For t = to the program trajectory is ray x. 
On the intervals t 1 ~ t ~ t~+x, ] = 0, t . . . .  the origin of the program trajectory 
is moving along it together with point E ;  here the program trajectory is not altered 
in other respects. At the encounter instants t 1, ] ----- t ,  2,  . . . the program trajectory 
is reconstructed in the following way. By A I  and Q1 we denote, respectively, the posi- 
tions at instant t1 of point E and of that one of points p~ for which the minimum in 
relation (3.1) is achieved. If  for t = tl the minimum in (3.1) is achieved simultan- 
eously for several points P~, then as QI we select, for definiteness, that one of them 
for which the number i is the least. We draw two L~-spirals whose equations have the 
form 

R~ = L ~ e x p ( ~ ) ,  0 ~ q ~ ,  i = ~ , 2  . . . .  (3.2) 
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Here R j  is the current distance from Qi; q~l is the polar angle read off from the straight 
line QiAI in two opposite directions for the two spirals being examined. The arcs of the 
L/-spirals (3 .2)  are mirror-symmetric to each other relative to segment QyA~ and have 
common endpoints for q~y = 0 and qgj = ~.  

Suppose that the program trajectory has been constructed for t = ty - -  0 and that 
it starts at point Aj .  If  for t = tj - -  0 the program trajectory has no other common 
points besides Ay with the Ly-spirals (3.2) constructed, then the program trajectory for 
t = ty q- 0 will be the same as that for t = tj - -  0. Otherwise, by By we denote 

the first point after Ay of the intersection of the program trajectory corresponding to 
ty - -  0 with the closed curve formed by the arcs of the Ly -spirals (3.2). The program 

trajectory corresponding to t = tj -q- 0 is the curve comprised of the arc AjBy of that 
one of the Ly -spirals containing point B 1 and of the remainder of the program trajec- 
tory for t j  -- 0 starting from point By. 

The process described recurrently determines the program trajectory for any instant 
t > to for any finite number of encounters. For t E (tj,  tj+l) the program trajectory 

consists, by construction, of arcs of L j, Lj- ,  . . . . .  Lx-spirals, connected in the order of 
decreasing index, and of the portion of ray z which includes the point at infinity. The 
arcs of all the spirals correspond to the polar angles 0 ~ q~ ~ ~x, but some arcs can 
be absent, The construction of a program trajectory at any instant completely determines 
the control method for point E .  The real trajectory of point E consists of arcs of L j -  
spirals and of a portion of ray x, and to accomplish this trajectory it is sufficient to 
measure the positions of points P~ only at the encounter instants. It remains to select 
the parameters L and x so as to ensure the finiteness of the number of encounters and 
the evasion of point E from all P l ,  • • . ,  P,~ while its motion remains in the e -ne igh-  
borhood of the nominal motion. 

4 .  E l t l m a t e  o f  t h e  d l | t l n c e | .  At first we assume certain estimates. Suppose 
that immediate ly  before the ] - t h  encounter (t = t~ - -  0), ] > t the program trajec- 
tory starts off on an arc of an Lv-spiral, p < ] - -  1, of nonzero length, after which 
there follows an arc of an La-spiral ,  q < p - -  1. Figure 2 shows an arc A pBp of an 

I £j \ / 

Fig. 2 

Lp-spiral  with pole Qp and the arcs of two 
Lj-spirals with pole Qj. As a result of the 

construction in Sect. 3 we obtain a program 
trajectory for the instant t = tj -~ 0, a sec- 
tion AjBjB v of which is shown in Fig. 2 
by a heavy line with arrows. For t > tj 

we estimate the distance EPi from point 

E up to that point Pi with which the ]-th 
encounter occurred. At first we assume that 
the next (] -4- t ) - s t  encounter does not take 
place so long as point E moves over the sec- 
tion AjBjBp of the program trajectory. On 

the arc AjBi of the Lj-spiral  we have EPi ~ L j  in accord with the property of a 
logarithmic spiral (see Sect. 2). Let us estimate in two ways the distance EPt as point 
E moves along the arc BjBp. 

We introduce into conskleration a point E '  moving with a constant velocity v along 
the straight line A jB /  from the point B j  in the opposite direction of A j. Here we 
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suppose that the point E '  is located at B 1 at the very same instant t '  as point E.  AI>- 
plying to points E '  and Pt the reasonings presented at the end of Sect. 2 for the points 
E and /9, we obtain that E 'P  i ~ Lj  for t ~ t ' .  By the triangle inequality we have 

EPi  ~ E 'P i  - -  EE'  ~ Lj  - -  EE'  (4.1) 

Since points E and E '  have a velocity v of like magnitude and coincide at the instant 
t ' ,  we obtain t 

ee'--I,  j [ e ( t ) - - e ' l d t  , t ~ t '  (4.2) 

t" 
Here e '  is the unit vector of the straight line AIBj  and e (t) is the unit vector of the 
tangent to arc BjBp.  By s we denote the current length of an arc of curve BjBp,  
counted off from point B 1. We have 

t 8 

l e ( t ) - - e ' ]  ~ l e ( t ' ) - -  e '  + I de [ e '  [ - t - I  d'~'elds "~ydtl < l e ( t ' ) - -  ds [ (4.3) 
t" 0 

The unit vector e'  of the chord A j B  I equals the unit vector of the tangent at some 
point of the Lp-spiral, lying between A t and B/ .  By s' we denote the length of the 
arc of the Llo- spiral from this intermediate point to point B 1 ; from (4.3) we obtain 

8 ~ 8 

[e(t)--e'l• ds "I- ~ d $ <  9------~ < -[-s"Pra (4.4) 
0 0 

Here we have used the inequality ] de / ds [ ~ pm -t ,  where pmis the minimal radius 
of curvature of the Li~-spiral and s" is the length of the arc AIB  I of this spiral. The 
radius of curvature of the Lp-spiral  defined by Eq.(3.2) is 

P = (Tl ~ q- Tl~2) '/, (R" -k- 2R~ ~ - -  RR.~) -1 = Lp (~,~ q- t)'1, e xq' 

Here the subscripts ¢p denote differentiation with respect to (pp,while the subscript p 
has been dropped. 

For tp ~ 0 the minimal radius of curvature is 

P,n = L~ 1/~-~ q - i (4.5) 

we estimate the length s n of the arc AIB i of the Lp-spiral using relation (2.2) for 
the Lp-spiral and the triangle inequality 

s" = (QpB~ - -  Q~Aj) k -~ ~< AjBjk -~ < (QjB~ + Qj&)k "~ % Ljk -~ (e x~ + t )  (4. 6) 

In the estimate (4. 6) we have used the relations 

Q~A~ = L.t, QjBj ~ Lie x" (4.7) 

following from (3.2). Substituting inequality (4.4) into (4. 2) and integrating, we obtain 

EE'  < (1/2S2 "Jl- $8") / Prn  (4°  8)  

Introducing relations (4.8), (4. 5) and (4. 6) into inequality (4. 1) and using notation 
(2. 5), we find 

EPt  ~ L 1 -  Lp- lal  ss - -  LiLp-la~s, s~O (4.9) 

a x =  1/2(L 2 +  i)-'/', a~ = X  - l ( e  ~" + 1) 

For an estimate of the distance EP~ in another way we note that point P t  occupies 
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position Qj at t = tj and its velocity does not exceed kv. Therefore. 

E P i  ~ QjE - -  QjP: ~ (BjE  - -  QjBj) - -  kv (t - -  t~) >/ (4. lo) 

B i E  - -  L~e x~ - -  k (sj -5 s) 

Here we have twice used the triangle inequality for the estimates of EP~ and QjE,, 
as weU as the inequality (4. 7) for QjBj. The length of the arc A i B  ~ of the LFsplral 
is denoted by s i • We estimate it, taking equality (2.2) and estimates (4.7) into account 

Sj  = k -1 (QjBj - -  QjAj) ~ L jk  -1 (e x~ - -  1) (4.11) 
Denoting 

R = Q p E ,  R ,  = Q p B j ,  x = L B J Q p  E 

for brevity and using the equalities R : R , e  xx = 1t ,  -}- ks stemming from relations 
(3.2) and (2.2) for the Lp-spiral, we obtain (see Fig. 2) 

BsE = (R 2 q- R ,  2 - -  2 R R , e o s  X)'/, = (R - -  R , )  [t -4- (4.12) 

4 sin ~ (X / 2) R R ,  (R - -  R,)-2I'/ ,  = ks [t -4- 4 sin 2 (X / 2) e x× X 

(e xx - -  t)-s]'/ ,  = ks [t + s in  2 (X / 2) sh  -s (LX / 2)]'/, (0 ..< X ~< ~) 

It is easy to verify by differentiation that on the interval 0 ~ X -~< a the function 
sin (X / 2) sh -1 (LX / 2) decreases monotonically for any k > 0 and. therefore, 
achieves its minimum for X = ~. Then from (4.12) we obtain 

B j E  > ks [t -4- sh -s (~.n / 2)1 ~/' = kse th  (~.r~ / 2) (4. 13) 

Introducing inequalities (4.11) and (4. 13) into inequality (4. 10) and using notation 
(2.5), we find 

E P i  ~ a a s  - -a4Lj ,  s ~ O  (4.14) 

as -- k [eth (kn / 2) - -  t] = 2k (t q- L*)-'/, (e x~ - -  t) -1 

a 4 =  2e x = -  t > 1  

Comparing the two estimates (4.9) and (4.14), we obtain 

EP:  > max [11 (s), / ,  (s)] ~ rains>0 max  [/1 (s), Is (s)] (4.15) 

]1 (s) = L i - -  Lp-Xal ss - -  LiLp-lass,  Is (s) = ass ~ a4L j 

The function ]1 (s) decreases monotonically while the function 12 (s) increases mo- 
notorttcally with the growth of s for s ~ 0 ; /x (0) ~ 0 and [s (0) ~ 0. The mi- 
nimum in (4.15) is reached for the s ,  ~ 0 for which 

]1 (s.) = / 2  (s.), EP~ ~ / s  (s.) = L ~  (4.16) 

Here St is a dimensionless quantity introduced by the last relation in (4.16). From this 
relation, using (4. 15), we express 

s ,  = Lj  (a, + Ix) as -1 (4. 17) 

We substitute equality (4. 17) and the expressions (4. 15) for ]I and ]2 into the first 
equation of (4. 16) and, next, we solve the resulting equation relative to Lj. We obtain 

Lj  aa ~ ( t  - -  IX) ( 4 . 1 8 )  
Lp -- g (!~)' g (~) = (a4 q- IX) (axaa -t- a~aa + axIX) 
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The function g (~) decreases strictly on the interval [0, i ]  ; consequently, the inverse 
function g-1 exists which is continuous and decreases strictly on the interval [0, g (0)]. 
Therefore, allowing further for relations (3.1) and for the inequality ] - -  p ~ i ,we  
obtain 

{~ = g-1 (×J-v) > g-1 (×), 0 < x < g (0) (4. 19) 

We note that 

g (0) < as2a4-2a1-1 ~ as~ax -1 = 8k s ( l  + ~)- ' / ,  (e x~ - -  1 ) - 2 ~  
8 [ L / ( e  x ~ - i ) ]  2 < 8 ~  - ~ < i  0 , > 0 )  

follows from relations (4.18), (4.9) and (4. 14). Substituting inequality (4.19) into(4.16), 
we have 

EPt >/Ljg  -1 (r0 (4.90) 

Thus, as point E moves along the arc BIB p the estimate (4. 90) is valid for any × 
from the interval 

0 < ~ < g (0) < l (4. 21) 

Since under conditions (4.21) we have g-1 (x) < t ,  inequality (4. 20) is valid as well 
for motion along the arc AjBj  of the LFspiral ,  where EPt ~ L/. The fulfillment 
of conditions (4. 21) guarantees estimate (4. 20) as point E moves from Aj  up to its 
departure at the point Bp  on the arc of the Lq-spiral,  q -~< p - -  i .  This assertion is 
valid, of course, also wb.cn one or both arcs AjBj and BjBp are zero. 

We assume above that the next (] + t ) -s t  encounter does not occur as point E 
moves along the section AjB/Bp .  we now relinquish this assumption. Let the point 
g experience after the instant t/ encounters with the points P l ,  • • ", P n  and let 

(t) ~ 0 be the number of these encounters on the interval (tj, t). Let • denote 
the instant when point E first goes onto the program trajectory corresponding to the 
instant tj -4- 0 after point Bp.  In other words, ~ is the first instant after t i  that point 
E goes onto some L r-spiral,  r ~ q < p - -  i .  Let us consider a point E ,  moving 
at the velocity v on the section AjBtB v of the program trajectory. Suppose that point 
j~,  coincides with g at instant t 1 and arrives at point Bp at instant lr,. Then, in ac- 
cord with the triangle inequality and the estimate (4.20) obtained for the point E , ,  
we have 

EPi > E,P~ -- E E ,  > Llg -1 (×) --  EE , ,  ti-.<t< ~, (4.22) 

Let us estimate the distance between points E and E ,  
t 

 e.=lS d,I, 
t i 

Here v (t) and v ,  (t) are the velocity vectors of points E and g , ,  respectively, equal 
in magnitude to a constant v. For the sections of the trajectory of point E ,  belonging 
to the trajectory of point g , ,  the corresponding contribution to integral (4.23) equals 
zero. For the remaining sections integral (4.93) is majorized by twice their total length, 
i . e . .  E E ,  ~ 2Y~, ti ~ t ~ ~;, ( 4 . 2 4 )  

Here Y is the sum of the arcs of the Lj+x, • • . ,  Lj+v- spiral*, which we estimate by 
means of inequality (4. 11) and formula (3. I) 

X ~ sj+t + sj+s + • • • + s j + ,  ~< L j k  -1 (eX"--t) x (t - -  x') (t  - -  x) -1 (4. 25) 

If 1: ~ T , ,  estimates (4.22) and (4. 24) are valid on the whole interval [t 1, ~]. If. 
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however, T ~ T. ,  a further consideration of t E [T.,  ~] is needed. The path tra- 
versed by point E in the time [ th t] does not exceed the path traversed by point E ,  
in the time [tj, T.]  by more than Y.. Therefore, point E traverses a path no greater 
than P. in the t ime t - -  T.  and t - -  T.  ~ E / v. During this t ime the distance EPI 
can decrease by no more than 

v ( l  + k) ( t - - T , ) <  (i  + k) Y~ 

Subtracting this quantity from the right-hand side of inequality (4.22) and using the in- 
equalities (4.24) and (4. 25). we obtain the required estimate 

EPi  ~ Llg -l (×) - -  (3 q- k) Z ~ L1 [g-X (×) __ (3k-X q- (4.26) 

1)(e x ' - 1 ) × ( 1 - × ' ) ( 1 - × ) - 1 ] ,  t ~ < t ~ < x  

Note that the botmdedness of Z follows from formula (4. 25) and, consequently, that of 
"~ a s  V - - - ) -oo .  

6.  C h o i c e  o f  t h e  r a t n e u v e r  p a r t m e t e r e .  Letus require that the inequa- 
lity 

g-1 (U) > (3k -1 q- l)(e xn - -  i )  × (i  - -  u ' )  (i  - -  ×)-1 .q_ ~,+1 (5.1) 

be satisfied for all integers V . Under condition (5.1), from inequality (4. 26) foUows 
E P  i ~ Li+,+ 1 for all t I ~ t ~ T. This implies that among the encounters taking 
place in the interval (tl, t) there is no encounter with point P i .  Therefore, under con- 
dition (5. 1), encounters with point P~ do not occur on the whole interval (tl, x) .  We 
rewrite condition (5.1) as 

g - 1  (X) ~ b x  - -  x v+l  (b - -  i ) ,  b : (3k -1 q- l )  (e x" - -  1) ( l  - -  ×)-~ (5.2) 

Let us estimate quantity b, using formulas (2.5). We obtain 

b ~> 3k-lXn ~ 3n ) l 

Therefcce, inequality (5.2) is satisfied for all "~ ~ 0 if it is satisfied for ~ : 0. Sub- 
stituting ~ = 0 into (5. 2), we obtain the condition g- t (z)  ~ ~. Combining this with 
the condition (4. 21) found above and allowing for the monotonicity of function g, we 

have 0 ~ Z -~ U, (5.3) 

where X, is the single positive root of the equation 

g ( u , )  = ~ , ,  U,  ~ 0  (5.4) 

We select the parameter x from interval (5.3).  Here the motion of point E described 
in Sect. 3 por__~sses the following property. If the ] - t h  encounter took place with point 
P~ as point E moved along an arc of the Lp-spiral, p -~  ] - -  i ,  then the next en- 
counter with this same point P i  can take place no earlier than after point E has gone 
onto an arc of the Lr-spiral ,  r ~ p - -  i .  This property extends to ray x which can 
be taken as an L0" spiral. 

Without loss of generality suppose that the points P~have been numbered in the order 
in which their first encounters with point E takes place. Then, the first encounter with 
point Px occurs on ray x and, in accordance with the property established, there are no 
other encounters with this point. The first encounter with point i° 2 can take place either 
on an ate of tim Ll-spiral  or on ray x after leaving this arc. In the first case a repea- 
ted encounter with point P~ can occur only after going onto ray x, while in the second 
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case it does not occur at all. Let us estimate the totai number N (n) of encounters with 
with n pursuers. From the preceding arguments follows N ( | )  ~ t and N (2) ~< 3. 

a Figure 3 shows schematically, not 
to scale, typical trajectories of point 

~" ¢ ~ . ~  dk~ .J  ~-w E for(a)  n :  2, N----- 3 and(b)  
n : 3, N = 7 ; the digits indicate 
the encounter numbers. 

The following inequality, provable 
b by induction, is valid : 

N (n) ~< 2" - -  t (5.5) 

: ~ ~ ~ / #  5 ~  " ~  d~ inequality (5.5)  is tree for n : i ,  2, 
3. Let it be true for n. Then, in the 

Fig. 3 case of n -~- t pursuers the total num- 
ber of encounters can be estimated as 

follows. After the first encounter with point Pl the point E moves along the Ll-spira l  
and can encounter the remaining n points. Not more than N (n) encounters with these 
points can occur before going onto ray x . After going onto ray x point Pl need not be 
taken into account since encounters with it do not occur any more,but  N (n) further en- 
counters can take place with the remaining points. Thus, with due regard to (5 .5)  

N ( n - ~  1) ~ t -3 t- N (n)-q- N ( n )  ~--< 2 n+l - -  ] 

and inequality (5.5) has been proved by induction. 
Let us now estimate the distance between point E and the point E ° accomplishing 

the nominal motion. Analogously to inequalities (4.23) -- (4.25) we obtain 

E E  ° -~< 2 is I + s~ + . . . + sN(,~)] < 2 L k  -1 (e x= - -  t )  ( t  - -  u) -x (5 .6)  

The motion of point E must lie in the s-neighborhood of the nominal motion, i . e .  , 
E E  ° ~ e. For tkts, according to (5 .6 ) , i t  suffices to take 

0 < L ~< ra in  [Vs ek  ( t  - -  u) (e x" - -  t )  -1, /~01 (5.7)  

We have here also allowed for the condition L ~ 8 0 imposed above. Thus the para- 
meters L and ~¢ must be selected within the limits (5.3) and (5. 7). Here the evasion 
maneuver of Sect. 3 satisfies all the conditions imposed and the number of encounters 
satisfies inequality (5.5).  

According to (4. 18) and (5.4)  the determination of ~ .  requires solving a cubic equa- 
tion. Let us obtain a simple explicit  expression for ~¢ ----- :% lying within limits (5.3) .  
Together with the function g from (4.18) we consider the linear function 

go (! t) ~-- ( t  - -  It) gD gl  = aa ~ (a4 A- t ) - l ( a l a4  -4- a~at -4- t )  - t  ( 5 . 8 )  

Comparing (4.18) and (5.8) we see that go (i x) ~< g (ix) for 0 ~ ix ~ 1, and the 
root x o of the equation go (Uo) = zo (5 .9)  

lies within the limits (5.3) .  Solving Eq.(5.9) with due regard to (5, 8), we find the quan- 
tity required ~to = g~ 1 (t + gl) (s. 10) 

Let us estimate further the minimal distance 8 between the points E and P l , -  • • , 
Pn for t ~> to. Since the maximum number of encounters does not exceed N (n) 
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from (5 .5) .  
6 = min~,t EPi ~ iN(m+1 = i x  N(n) ~ LxC' - I )  (5.11) 

l < i < n ,  t~to  

If we select the maximum possible L allowed by inequality (5.7), then from (5.11) 
we obtain 

6 > min  [Cn (,~) e, Cn* (k) 60] (5.12) 

C,, (,k) = 1/2 k (t  - -  u) (e x" - -  i ) - l u  (2n-1), Cn* (k) = x (2n-l) 

As ~¢ we can take any number from interval (5.3), for example, the u0 from (5.10). We 
obtain explicit expressions for ge, Cn (k) and Cn* (k) by substituting relations (5.8), 
(4. 9),(4. 14) and (2.5) into formulas (5.10) and (5.12). In particular, when the capabi- 
lities of the pursuers approach the capability of the evading point (k ~ i ) ,  we find 
according to the formula, indicated above 

×o ~ 2 ~  -4"x, C.  (k) . ~  0.5e-"XU(o2"-t) 

C . *  (k) ~ x ~ " - ' ,  ~ = k (I  - -  k W v ,  - , .  oo ,  k --, i 

We note that the evasion strategy proposed in Sect. 3 for point E ,  as well as the bounds 
(5.3) and (5.7) on the choice of parameters L and ~¢, do not depend upon the number 
n of pursuers. 

Tramlated by N. H. C. 
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We give criteria for escape and / -escape in nonlinear differential games. The 
paper is closely related to the investigations in [ 1 -  8]. 

1, Let the motion of a vector z in an n-dimensional Euclidean space R be des- 
cribed by the vector differential equation 

dz / dt = l ( t, z, u, v) (1.1) 

where t ~ 0; u ~ P and v ~ Q are control parameters varying on sets p and Q 
compact in R . Regarding the right-hand side of Eq. (1. 1) we assume that: 

a) ] ( t ,  z, u, v) is continuous in (t, z, u, v) ~ X =  [0, + o o ) ×  B x P x Q ;  
b) the inequality 

I t ( t ,  ,~, u, v) - -  l ( t, z,,  u, O l <  k, I  z~ - -  z~ I 

where k .  is a constant depending only on e ,  is satisfied for any u ~ P,  v ~ Q and 

for t > 0 ,  Zl, 7 . , 2 ~ / {  , I t l + l z ,  l + l z ,  l < c  ; 
c) a constant B exists such that 

I ( z . / ( t ,  z, u, v))l ~ B (I + I z I') 


